
Cuckoo Filter:

Practically Better Than Bloom

Bin Fan (CMU/Google)
David Andersen (CMU)

Michael Kaminsky (Intel Labs)
Michael Mitzenmacher (Harvard)

1

See https://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pptx for the original PPTX file

https://www.cs.cmu.edu/~binfan/papers/conext14_cuckoofilter.pptx

What is Bloom Filter? A Compact Data Structure

Storing Set-membership

• Bloom Filters answer “is item x in set Y ” by:

• “definitely no”, or

• “probably yes” with probability ε to be wrong

• Benefit: not always precise but highly compact

• Typically a few bits per item

• Achieving lower ε (more accurate) requires spending more

bits per item

2

false positive rate

Example Use: Safe Browsing

3

www.binfan.com

Example Use: Safe Browsing

4

www.binfan.com

Lookup(“www.binfan.com”)

Known Malicious URLs

Stored in Bloom Filter

Example Use: Safe Browsing

5

www.binfan.com

Lookup(“www.binfan.com”)
No!

Known Malicious URLs

Stored in Bloom Filter

It is Good!

Example Use: Safe Browsing

6

www.binfan.com

Lookup(“www.binfan.com”)

Known Malicious URLs

Stored in Bloom Filter

Scale to

millions URLs

Remote

Server

Please verify

“www.binfan.com”

Probably Yes!

Bloom Filter Basics

A Bloom Filter consists of m bits and k hash functions

Example: m = 10, k = 3

7

0 0 0 0 0 0 0 0 0 0

Insert(x)

hash1(x)

hash2(x)

hash3(x)

1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0

Lookup(y)

hash1(y)

hash2(y)

hash3(y)

= not found

High

Performance

Low Space

Cost

Delete Support

Bloom Filter

Counting

Bloom Filter

Quotient Filter

8

Succinct Data Structures for

Approximate Set-membership Tests

Can we achieve all three in practice?

✔ ✗✔

✔✔

✔✔

✗

✗

Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary

9

Basic Idea: Store Fingerprints in Hash Table

10

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer fingerprint

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

Basic Idea: Store Fingerprints in Hash Table

11

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Basic Idea: Store Fingerprints in Hash Table

12

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

• Lookup(x):

• search Fingerprint(x) in hashtable

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

FP(x)

Lookup(x) = found

Basic Idea: Store Fingerprints in Hash Table

13

• Fingerprint(x): A hash value of x

• Lower false positive rate ε, longer fingerprint

• Insert(x):

• add Fingerprint(x) to hash table

• Lookup(x):

• search Fingerprint(x) in hashtable

• Delete(x):

• remove Fingerprint(x) from hashtable

FP(a)

0:

1:

2:

3:

FP(c)

FP(b)

5:

6:

7:

4:

Delete(x)

How to Construct Hashtable?

14

• Perfect hashing: maps all items with no collisions

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)

{a, b, c, d, e, f}
f(x)

(Minimal) Perfect Hashing:

No Collision but Update is Expensive

• Perfect hashing: maps all items with no collisions

• Changing set must recalculate f ➔

high cost/bad performance of update

15

{a, b, c, d, e, f}
f(x)

(Minimum) Perfect Hashing:

No Collision but Update is Expensive

{a, b, c, d, e, g}
f(x) = ?

FP(e)

FP(c)

FP(d)

FP(b)

FP(f)

FP(a)

Convention Hash Table: High Space Cost

• Chaining :

• Pointers ➔

low space utilization

• Linear Probing

• Making lookups O(1) requires

large % table empty ➔

low space utilization

• Compare multiple fingerprints

sequentially ➔

more false positives

16

bkt1

bkt2

bkt3 FP(a)

bkt0

FP(c)

FP(d)

FP(a)
Lookup(x)

Lookup(x)

FP(c)

FP(f)

Cuckoo Hashing[Pagh2004] Good But ..

• High Space Utilization

• 4-way set-associative table: >95% entries occupied

• Fast Lookup: O(1)

17

0:

1:

2:

3:

5:

6:

7:

4:
hash2(x)

Standard cuckoo hashing doesn’t work with fingerprints
[Pagh2004] Cuckoo hashing.

lookup(x)

hash1(x)

18

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

c

a

5:

6:

7:

4:
Insert(x)

h1(x)

h2(x)

19

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

c

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4

Kick a to bucket 4
h2(x)

20

Standard Cuckoo Requires Storing Each Item

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Rehash a: alternate(a) = 4

Kick a to bucket 4

Rehash c: alternate(c) = 1

Kick c to bucket 1

h2(x)

21

Standard Cuckoo Requires Storing Each Item

c

b

0:

1:

2:

3:

a

x

5:

6:

7:

4:
Insert(x)

Insert complete

(or fail if MaxSteps reached)

Rehash a: alternate(a) = 4

Kick a to bucket 4

Rehash c: alternate(c) = 1

Kick c to bucket 1

h2(x)

Challenge: How to Perform Cuckoo?

• Cuckoo hashing requires rehashing and displacing

existing items

22

With only fingerprint,

how to calculate item’s alternate bucket?

FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to which bucket?

Kick FP(c) to which bucket?

We Apply Partial-Key Cuckoo

• Standard Cuckoo Hashing: two independent hash

functions for two buckets

• Partial-key Cuckoo Hashing: use one bucket and

fingerprint to derive the other [Fan2013]

To displace existing fingerprint:

23

bucket1 = hash(x)

bucket2 = bucket1 hash(FP(x))

bucket1 = hash1(x)

bucket2 = hash2(x)

alternate(x) = current(x) hash(FP(x))

[Fan2013] MemC3: Compact and Concurrent MemCache

with Dumber Caching and Smarter Hashing

Partial Key Cuckoo Hashing

• Perform cuckoo hashing on fingerprints

24

FP(b)

0:

1:

2:

3:

FP(c)

FP(a)

5:

6:

7:

4:

Kick FP(a) to “6 hash(FP(a))”

Kick FP(c) to “4 hash(FP(c))”

Can we still achieve high space utilization with

partial-key cuckoo hashing?

Fingerprints Must Be “Long” for Space Efficiency

• Fingerprint must be Ω(logn/b) bits in theory

• n: hash table size, b: bucket size

• see more analysis in paper
25

When fingerprint > 5 bits, high

table space utilization

Ta
b

le
S

p
a

c
e

U
ti
liz

a
ti
o

n

Table size: n=128 million entries

Semi-Sorting: Further Save 1 bit/item

• Based on observation:
• A monotonic sequence of integers is easier to compress[Bonomi2006]

• Semi-Sorting:
• Sort fingerprints sorted in each bucket

• Compress sorted fingerprints

+ For 4-way bucket, save one bit per item

-- Slower lookup / insert

26

21 97 88 04

fingerprints

in a bucket

04 21 88 97

Sort

fingerprints
Easier to compress

[Bonomi2006] Beyond Bloom filters: From approximate membership checks to

ap- proximate state machines.

Space Efficiency

27

ε: target false positive rate

b
it
s

p
e

r
it
e

m
 t

o
 a

c
h

ie
ve

 ε

Cuckoo filter +

semisorting

more compact

than Bloom filter

at 3%

Cuckoo filter

Bloom filter

Lower bound

More Space

More False Positive

Outline

• Background

• Cuckoo filter algorithm

• Performance evaluation

• Summary

28

Evaluation

• Compare cuckoo filter with

• Bloom filter (cannot delete)

• Blocked Bloom filter [Putze2007] (cannot delete)

• d-left counting Bloom filter [Bonomi2006]

• Cuckoo filter + semisorting

• More in the paper

• C++ implementation, single threaded

29

[Putze2007] Cache-, hash- and space- efficient bloom filters.

[Bonomi2006] Beyond Bloom filters: From approximate membership

checks to approximate state machines.

Lookup Performance (MOPS)

30

Cuckoo filter is among the fastest regardless workloads.

11.93

6.28

7.96

9.26

4.86

11.92

6.45

8.51

12.04

8.28

0

2

4

6

8

10

12

14

cf cfss dlbf bbf bf

Hit Miss

Cuckoo Cuckoo +

semisort

blocked

Bloom

(no deletion)

Bloom

(no deletion)

d-left counting

Bloom

Insert Performance (MOPS)

31

Cuckoo filter has decreasing insert rate, but overall is

only slower than blocked Bloom filter.

Cuckoo

Blocked Bloom

d-left Bloom

Cuckoo +

semisorting

Standard Bloom

Summary

• Cuckoo filter, a Bloom filter replacement:

• Deletion support

• High performance

• Less Space than Bloom filters in practice

• Easy to implement

• Source code available in C++:

• https://github.com/efficient/cuckoofilter

32

